Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 9-(4-Methoxyphenyl)-3,4,6,7,9,10-hexahydro-acridine-1, $8(2 \mathrm{H}, 5 \mathrm{H})$-dione

## Cheng Guo, ${ }^{\text {a }}$ Shujiang Tu, ${ }^{\text {b }}$ * Tuanjie Li ${ }^{\text {b }}$ and Songlei Zhu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Applied Chemistry, Nanjing University of Chemical Technology, Nanjing 210009, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

## Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.044$
$w R$ factor $=0.095$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$, was synthesized by the reaction of cyclohexane-1,3-dione with 4-methoxybenzaldehyde and ammonium acetate in glycol under microwave irradition. X-ray analysis reveals that the dihydropyridine ring is in a boat conformation and both cyclohexenone rings adopt envelope conformations. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the glide-related molecules into zigzag chains along the $a$ axis.

## Comment

Acridine derivatives containing the 1,4-dihydropyridine unit belong to a special class of compounds, not only because of their interesting chemical and physical properties, but also because of their immense utility in the pharmaceutical and dye industries, and their use as therapeutic agents (WysockaSkrzela \& Ledochowski, 1976; Nasim \& Brychey, 1979; Thull \& Testa, 1994; Reil et al., 1994; Mandi et al., 1994). Recently, we have reported the synthesis of 9 -(substituted phenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydrocridine-1,8dione (Tu et al., 2002). We report here the crystal structure of the title compound, (I).

(I)

The dihydropyridine ring in (I) is in a boat conformation. In this ring, atoms N 1 and C 3 deviate from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane by 0.171 (3) and 0.272 (4) $\AA$, respectively (Fig. 1 and Table 1). Both cyclohexenone rings adopt envelope conformations. In the molecule, atoms C7and C8 are out of the C1/ $\mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 9$ plane by 0.0736 and $-0.5918 \AA$, respectively, and atoms C11 and C12 are out of the C4/C5/C10/C13 plane by 0.1002 and $-0.5522 \AA$, respectively. The dihedral angle between the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane and the benzene ring attached at atom C 3 is 86.67 (7) ${ }^{\circ}$. The methoxy group is nearly coplanar with the attached benzene ring, with a $\mathrm{C} 20-\mathrm{O} 3-$ $\mathrm{C} 17-\mathrm{C} 18$ torsion angle of 5.7 (3).

Glide-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming zigzag chains along the $a$ axis (Fig. 2).

Received 4 October 2004 Accepted 12 October 2004 Online 22 October 2004


Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.

## Experimental

Compound (I) was prepared by the reaction of cyclohexane-1,3-dione ( 1 mmol ) with 3-methoxy-4-hydroxylbenzaldehyde $(2 \mathrm{mmol})$ and ammonium acetate ( 2 mmol ) in glycol ( 2 ml ) under microwave irradiation (yield $95 \%$, m.p. 573 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.


Figure 2
A molecular packing diagram for (I). Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| O1-C6 | $1.242(2)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.373(2)$ |
| :--- | :---: | :--- | :--- |
| O2-C10 | $1.226(2)$ | $\mathrm{N} 1-\mathrm{C} 5$ | $1.384(2)$ |
| O3-C17 | $1.374(2)$ | $\mathrm{C} 1-\mathrm{C} 2$ | $1.361(2)$ |
| $\mathrm{O} 3-\mathrm{C} 20$ | $1.425(2)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.349(2)$ |
|  |  |  |  |
| C17-O3-C20 | $116.59(15)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 13$ | $123.72(17)$ |
| C1-N1-C5 | $120.52(15)$ | $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 13$ | $115.59(15)$ |
| C2-C1-C9 | $123.47(16)$ | $\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11$ | $121.26(18)$ |
| N1-C1-C9 | $116.27(15)$ | $\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 11$ | $117.27(17)$ |
| C1-C2-C3 | $121.39(15)$ | $\mathrm{O} 3-\mathrm{C} 17-\mathrm{C} 18$ | $124.12(16)$ |
| $\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 3$ | $118.52(14)$ | $\mathrm{O} 3-\mathrm{C} 17-\mathrm{C} 16$ | $116.23(17)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$ | $0.98(3)$ | $1.85(3)$ | $2.824(2)$ | $170(2)$ |

Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z$.
Atom H1 was located in a difference map and refined isotropically. All other H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ 1.2 or 1.5 times $U_{\mathrm{eq}}(\mathrm{C})$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of China (No. 20372057) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL 14) for finanical support.

## organic papers

## References

Jacobson, R. (1998). Private communication to the Rigaku Corporation.
Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. \& Molnar, J. (1994). Anticancer Res. 14, 2633-2636.
Nasim, A. \& Brychey, T. (1979). Mutat. Res. 65, 261-288
Reil, E., Scoll, M., Masson, K. \& Oettmeier, W. (1994). Biochem. Soc. Trans. 22, 62s.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Thull, U. \& Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.
Tu, S. J., Lu, Z. S., Shi, D. Q., Yao, C. S., Gao, Y. \& Guo, C. (2002). Synth. Commun. 14, 2181-2185.
Wysocka-Skrzela, B. \& Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.

